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In the paper we give a method for calculating the tractions (local forces) of the fluid motion
determined by an incoming plane pressure wave on an artificial hair cell transducer structure. The
sensing element of the transducer is a standing high aspect ratio cilium in the shape of a narrow thin
curved beam (tape-like), which can be easily fabricated in micro-/nanotechnology. The method is
based on considering the system of partial differential equations describing the motion of the
compressible viscous fluid in an acoustic linearized approximation, and representation of the
velocity field as a viscous acoustic single-layer potential. The boundary conditions, stating the
cancellation of the velocity components on the solid beam, yield a two-dimensional (2-D) system of
three integral equations over the beam’s surface for the traction components. In the case of a narrow
cilium, the system of integral equations furnishes a system of two 1-D integral equations over the
symmetry curve of the structure for obtaining the tangential and normal components of the traction.
This system is solved numerically by a finite (boundary) element method. The numerical code
written for solving the problem was applied to some particular structures. The last structure is
similar to the trichobothrivm of a spider Cupiennius salei. The results obtained show that the
curvature of the hair is enhancing sensitivity to flows directed normal to the main shaft of the hair
confirming the assertion of Barth et al. [Philos. Trans. R. Soc. London, Ser. B 340, 445-461

(1993)]. © 2006 Acoustical Society of America. [DOL 10.1121/1.2146108]

PACS number(s): 43.20.Fn [TDM]

1. INTRODUCTION

Many insects can detect the low-velocity movement of
the ambient air by means of hair sensilla that are deflected
from the resting position by the air motion. The sensilla re-
spond to the sound and wind as long as the frequency of the
incoming signal is small. This is the case in crickets whose
filiform cercal hairs vibrate in a sound field,' in caterpillars’
that react to the airborne vibrations of an approaching preda-
tor by means of filiform hairs on the thorax,”? in cock-
roaches and grasshoppers that can have thousands of filiform
sensory hairs of various sizes used for detecting danger.” The
spider’s filiform hairs, also referred to as trichobothria, form
spatial clusters and areas capable of detecting the magnitude,
direction and frequency of airborne signals.5’6

Fish use lateral line sensors to monitor sounds under
water.”8 The lateral line system consists of an array of dis-
tributed sensor nodes, each of them being a mechanoreceptor
having as a basic element a vertical cilium attached to sen-
sory cells. When the cilium of the hair cell is bent by the
water flow, the displacement will induce output responses
from the attached nerve cells. '

Filiform hair systems attracted attention of several au-
thors who derived and applied physical-mathematical mod-
¢ls to describe the behavior of sensilla and their interaction
with surrounding fluid motion. Substantial progress has been
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made in the understanding of the physics behind the working
of individual sensory hairs. Shimozawa and Kanou’ pro-
posed a model of a hair as a slender linearly tapered cone.
The viscous force acting on the hair shaft was obtained by
using the Oseen’s approximation for the drag force generated
on a circular cylinder by a steady-state flow of a viscous fluid
given by Imai.’® A more realistic shape of hair receptors as
elongated paraboloids was considered by Kumagai e¢ all!

Humphrey et al.'> made an extensive critical examina-
tion of Shimozawa and Kanou’s results’ and proposed a
mathematical model of the oscillatory motion of filiform
hairs of all arthropods. The shape of the hair is assumed to be
a straight, cylindrically shaped (rod-like) body of finite
length and diameter. They used as the driving force on the
hair shaft (driven by oscillating air motion) the same expres-
sion as the drag force generated on the rod of a solid pendu-
lum swinging in stationary air, given by Stokes in 1851.7
The Stokes’s solution was obtained by solving the linearized
system of Navier—Stokes equations (the Stokes’s approxima-
tion). The numerical method developed by Humphrey et
al.'"»"*1 solves a rigorously derived form of the equation for
the conservation of angular momentum for a single hair; its
estimation of the dynamic drag force is very informative.

The comparison of the measured properties of hair and
air motion with the values predicted numerically by the
theory developed by Barth et al. 16 showed very good agree-
ment. The theoretical considerations are of a very general
nature: they can be applied not only to different hair mor-
phologies and hair mechanics but also to different media (air
or water).!”"*
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The exhaustive analysis in Ref. 20 has shown that the
use of the Stokes’ approximation for computing the drag
force gives better results than Oseen’s model. The conclusion
is that Oseen’s approximation is not appropriate and is not
used hereafter in approaching these problems.

In a recent physical and mathematical approach, Hum-
phrey et al.*! examined the relative importance of the various
hair parameters in determining a hair’s absolute sensitivity to
medium flow as well as its frequency tuning. The effects of
different parameters affecting the response of a hair-like me-
dium flow detector are also given for hairs in water,'8:2122

As pointed out in Ref. 22, there are two major objectives
of this work. The first is to uncover and understand the basic
“design” principles underpinning the performance character-
istics of filiform hairs by trying to understand how physics
impacted the sensory ecology and adaptive evolution of the
natural motion sensors. The second aim is to derive and
implement realistic physical-mathematical models for these
exquisitely sensitive natural sensors. A model that predicts
the hair’s response will expedite the design and fabrication
of artificial sensors of similar function and characteristics.
The value of the engineering approach to hair sensilla sensi-
tive to medium flow is also underlined by the analysis by
Shimozawa et al.” The conclusion in Barth ef al.** is that the
outstanding sensitivity seen in the neural response of cricket
filiform hairs appear to represent the most sensitive biologi-
cal sensors so far known.

A number of researchers have recognized the utility of
the hair cell transducer structure and have applied MEMS
techniques to produce microscale artificial hair cell sensors
for sensing the perturbations of the air or water. #5730 Micro-
fabrication offers the benefits of high spatial resolution, fast
time response, integrated signal processing and, finally, low
costs.

We discuss the class of air- or water-sensing devices,
based on the momentum transfer principle, using a vertical
high aspect ratio cilium in the shape of a narrow thin curved
beam (tape-like) which can be easily micromachined. This
type of sensing element has not been found in nature, but the
hope is that they can reproduce some of the hair’s functions.
The sensor’s output is related to the direction and the inten-
sity of the flow. By providing more than two sensors, with
their cilia pointing in different directions, it is possible to
identify the direction of the local air flow (or sound).” Prac-
tically, these artificial cell sensors are grouped in arrays of
sensors with systematically varying frontal orientation and
cilium shape.

In this paper we focus on the mechanical interaction of
the air flow with individual hair-like sensors. When the mo-
tion of the ambient medium ranges in the domain of low
velocities and the cross dimension of the body is smaller
than the thickness of the viscous boundary layer of the sup-
porting substrate, the force density acting on the hair (the
traction) is dominated by the viscosity of the flow. The rela-
tion between the incoming sound or velocity field and the
output of the sensor is obtained by first solving the equations
of the motion of the viscous compressible fluid in the linear
acoustic approximation with specified boundary conditions
for the traction on the sensing element; the next step, which
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we are not considering here, is a structure deformation analy-
sis under the known tractions. The model described here is
tailored specially for determining the tractions (understood
as local forces) on the tape-like sensors. The resultant forces
(particularly the drag resulting by summing all the local
forces) are strongly dependent on the geometry of the prob-
lem and are very different from that corresponding to rod-
like sensilla found on insects. As a result, the numerical data
obtained from this theory cannot be readily compared with
those obtained in the above-cited papers. The validation of
the theory can be done by comparing the theoretical results
with experimental values obtained for artificial tape-like mo-
tion sensors. On the other hand, some qualitative results can
be transferred between rod-like and tape-like sensors. Thus,
the last example considered in this paper can be compared to
results obtained for the trichobotrium of a spider (Cupiennius
salei). Our calculations support the assertion of Barth et al. 16
that the role of curvature on the sensing hairs is to enhance
the sensitivity to flows directed normal to the main shaft of
the hair.

Despite their simplicity, these “rudimentary” velocity
sensors have an advantage over their very ‘“sophisticated”
inspiring natural sensors. While every natural hair shaft is a
single sensing element (characterized by total drag force), for
tape-like artificial sensors it is possible, depending on the
detection technique, to obtain more data as local forces in
different assigned points. This way the function of a cluster
of natural hair sensors could be substituted by just a few
artificial hair-sensing elements.

The solution of the linearized equations of viscous
acoustics is developed as a single-layer viscous acoustical
potential, which leads to a two-dimensional, regular Fred-
holm integral equation of the first kind for determining the
tractions on the sensors’ surface. Accounting for the fact that
the beam is narrow, an asymptotic analysis of the integral
equation yields a unidimensional integral equation. This
technique is similar to that used to obtain the lifting line
equation in classical aerodynamics.32 This unidimensional
integral equation is solved by a boundary (finite) element
technique for the tractions in the direction of the normal (at
the sensors’ surface) and tangent to the sensors’ middle
curve. Based on these theoretical considerations a numerical
code has been written and some results are provided in Sec.
IV D.

Il. EQUATIONS OF MOTION OF A VISCOUS
COMPRESSIBLE FLUID IN LINEAR ACOUSTICS
APPROXIMATION FOR HARMONIC OSCILLATIONS IN
TIME

A. The equations of the motion of a viscous fiuid in
the linear acoustic approximation

If the coordinate system is chosen so that the unper-
turbed fluid is at rest, the first-order equations describing the
isentropic flow of the gas can be written ag?13334

S—=5=4+V-.v' =0, (1)
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where p’ and v’ denote the pressure and velocity perturba-
tions, o’ is the stress tensor that in the case of Newtonian
fluids has the expression

2 ’
Ui'j = %‘[P',V']= [P' - (F'B"' gﬁ)v *v ]&lj

v} auf)
—ul =+ —L 3
IL( (9xj ﬂx,- i ( )

Py cp are the density and velocity of sound in a nonperturbed
fluid, and by g and py we denote the shear and bulk viscosi-

ties.
The above equations are associated with the nonslip

boundary condition
v =0, onS, “)

where the solid surfaces S limit the flow domain D. Thus,
the principal element to be determined by solving a viscous
acoustical problem is the velocity field (a vectorial unknown
field).

B. The basic equation in the case of harmonic
oscillations in time

We consider the case where all the physical variables are
harmonic in time with the same angular velocity w=2nf.
The case of the general time dependence can be obtained,
after analyzing each frequency separately, by Fourier super-
position. In the case of simple harmonic oscillations in time
we shall write

{p'(x,0),v'(x,0),0" (x,0)} = {p(x), v(x), o(x)}exp(~ iwr),

In this case, the continuity equation (1) becomes
Veov=gi 5)

Also, the momentum conservation equation can be written as

1
—iwv+—V-0=0, 6)
Po
which in the case of Newtonian fluids becomes
Av+ Zy=pvE. 0
v Qo

Here we have denoted

_ po= (/3 + pglivlcy
H

The relationships (5) and (7) give the equation for the pres-
sure,

[A+K*p=0, 8

which in the case u=puz=0 coincides with the basic equation
determining the motion of the inviscid compressible fluid in
the linear acoustic approximation. Finally, by applying the
operator of Eg. (8) to Eq. (7), there results the basic equation

B
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describing the motion of the viscous compressible fluid in
linear acoustic approximation,

[A+ A +k%]v=0. 9)

Here we have used the notations

@ . iwpg
k = 7 ) k = [}
cg—iw(41/3 + wg)lpy P

Im(k,k") = 0.

It is to be noticed that Eq. (8) is a Helmholtz-type equa-
tion and the operator in Eq. (9) is a product of two
Helmbholtz-type operators. Consequently, the velocity can be
written as a sum of two terms: the first describes a propaga-
tion mode (also called the acoustical mode) and the second is
a diffusion mode driven by viscosity.

C. Plane wave solution in the whole space

Consider an incoming pressure plane wave,
P™x) = pociPo expfikn - x}, (10)

where n is the unit vector of the propagating direction and P,
is a dimensionlessrconstant used for scaling the amplitude of
the incoming wave. It can be verified directly that (10) sat-
isfies the basic pressure equation. Since the pressure field has
an assigned form, Eq. (7) will determine the associated ve-
locity field as

vi(x) = ikécipon explikn - x}, (11

where

5Pz (4us3 + ppliwlct
B iwpy — pk? )
'We notice that in this case that the velocity field contains

only a propagating mode.

D. Plane wave solution in the half-space

Let us consider now the domain D as being the upper
half-space z>>0. The z=0 plane is assumed a solid boundary,
hence the solution has to satisfy the no-slip boundary condi-
tion

v(x,y,0)=0. (12)
In the case the incident wave has the form
PpP(x) = pociPo explikn - x}, n,#0; (13)

we consider the pressure field of the form
p(x) = pociPofexplikn - x} + A expfikn’ - x}], (14)

where n=(n,,n,,n,), n'=(n,,n,,—n,), and A is a constant.
By using formula (11) we can write

v(x) = ik8c2Po[n explikn - x} + An’ explikn’ - x}]
+u’c}Py explik(nx + n,y) - qz], (15)

where

qg= \/kz(ni + ni) -k, Re(q)>0.
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The constants A and u® are determined such that the
solution satisfies the nonslip boundary condition:

qn, — ik(n? + nzz. )

gn, + ik(n> + n2)’

—2ikqénn,

o —2ikqdnmn, 0_
Uy=——— 5, U= 5,
gn, + ik(n; + ny)

gn, + ik(nf + nf) '

0 2k25(nf + ”3)”z

MZ=

. 16
qn, + ik(ni + ni) (16)

Tt should be noted that the complementary velocity u
=u’c2P, explik(nx+n,y)—qgz] has a boundary layer struc-
ture.

In the solution (14), (15) one can recognize the incident
wave (the first term in brackets), the reflected wave (the sec-
ond term), and the contribution of the viscous boundary layer
(the last term). Consequently, the solution in this case con-
tains a propagating mode and also a diffusive (viscous)
mode. Also, relation (16) yields the refection coefficient for
the acoustic pressure. The solution of the problem of reflec-
tion of a transverse wave from a flat boundary in the case of
an incompressible fluid can be found in Ref. 35. The most
important property of the reflected wave is that its amplitude
decreases exponentially as the distance from the solid surface
increases.

Ill. THE FUNDAMENTAL FORMULA AND THE
BOUNDARY INTEGRAL EQUATION FOR THE MOTION
OF A VISCOUS COMPRESSIBLE FLUID IN THE
LINEAR ACOUSTIC APPROXIMATION

A. The fundamental formula

We assume that the body occupying the domain D* lim-
ited by the surface S is immersed into an external flow field
characterized by the pressure p®(x) and velocity v'(x) that
are solutions of the equations of the linearized viscous acous-
tics. These functions can be the plane wave solution in the
whole space or that corresponding to the half-space z>0.
The solution of the problem [p(x),v(x)] is defined in the
external domain D~.

It is possible to use a direct approach to solve the
boundary-value problem by means of the finite difference or
finite element methods. Due to the infinity of the domain
these equations will be written for all the mesh points inside
domain D~. We prefer a boundary integral formulation that
involves more mathematics but results in a much simpler
system of equations written only on the mesh points on the
sensor’s surface. The starting elements are the following in-
tegral relationships that are proved in the Appendix:

t(x') exp(ikjx - x'|)

f J’ da',
s 4m(1 —iwv'/ch)x — x'|
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yp(x) = pO(x) -

7(x) =v'(x) + f f tx") exp(ik[x ~ x')
S

4rpgvlx — x'|

><da'+VV-ff
s

t(x Mexp(ik*|x ~ x'|) — exp(iklx - x'|)] !
a'.

Aiwpg|x — x'|
(17)

By da’ we denoted the surface area element with respect to
variable x’ on the surface S. Once the traction t(x’) on the
boundary surface S is known, these relationships enable us
to determine the velocity and pressure in any point in the
domain D~. Since in the case of viscous fluids the boundary
conditions on hard bodies are expressed in terms of veloci-
ties, the relationship (17) will be used more often. This is
why we call this equation the fundamental integral formula.

Remark 1: In obtaining the relationship (17) we have
used the condition of no slip of the fluid along the surface &
(4). This is why we have in formula (17) only a single-layer
viscous acoustic potential.

The fundamental formula can also be written as

Yooiwv(x) = poiwv’(x) + f f

4’7T|X x|

XA(|x ~x'|,k,k")da’

-J

XC(|x - x'|,k,k")da’,

x - x)t(x') - (x~x")]

dax-x'|

where

A(Jx],k,k") = k™ exp(ik*|x|) - 3’%’%’"—)(1 — ik"[x])
C—XPT(,(""ZI—XD(1 —ik|x]), (18)

v 3 exp(ik*|x|)< N k*2|x|2>
C(x|,kk)=—">5""|1-ik -—
(|Xl ) |X]2 l IXI 3
3 exp(ik|x|)< K2|x ]2>
- | 1 —ik|x| - . 19

The behavior of the functions'A and C for small values of |x|
is given by formulas

D. Homentcovschi and R. N. Miles: Calculation of the fluid tractions



)= %(k2 +k?)+ ix I(k3 2k7)
+ O[(K* + &™) |x*],
C(|x},k.k") = %(k‘2 -+ O[(k* + k™Y

x|x[%].

B. The boundary integral equation of the
problem

By taking in the fundamental integral formula x=x,

e S there results
M) =X W ot

f fs s 4axg—x'f

J |

+ iwpovo(xo) =0, (20)

This is a Fredholm integral equation of the first kind for
determining the boundary traction t(x). Analytical solutions
of this equation can be obtained only in very particular cases.
Therefore, it has to be solved numerically by boundary-
element-type methods.

It is clear that the kernel of (20) has a singularity for
x’ =x,. The singular part of the integral operator can be writ-
ten as

A(xo - x'|.k,k")da’

1[t]= —(k2 ) f le(f i e

+l(k*z_kz)ff (Xo—X’)[t'-('X;;—X’)]da,_
2 s |

[xo—x

This form shows that when S is a Lyapunov surface, the
kernels are weakly singular. For @=0 the equation (20) re-
duces to the Oseen operator for the viscous incompressible
flow in Stokes’ approximation. Consequently, the methods
used to approximate the solution in the case of viscous in-
compressible fluids® can be successfully applied for inte-

grating Eq. (20).

IV. CALCULATION OF THE TRACTION ON A LOW-
FREQUENCY SENSOR

A. The integral equation of the curvilinear sensor
approximation

We consider now the case of a low-frequency sensor
having the shape of a curved narrow thin beam, symmetrical
with respect to the plane x=0, of length L and width
2dyg(s) [g(s) being a given function, |g(s)| <1] such that
e=dy/L<1. The range of frequencies considered here is
0.1 <f<500 Hz. At these frequencies the wavelength is
large compared with the length L. The equation of the sur-
face S is assumed of the form
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O0<<s<L,
O0ss<[,
—dpg(s), < x < dyg(s).

This shape of the sensing element was chosen since it can be
obtained in micro-/nanofabrication technology. Denote by C
the central curve of the surface (Fig. 1), supposed to be con-
tained in the plane x=0, and s is the curvilinear abscissa
along C. We shall write the integral equation (20) for the
points X, along the curve C.

Also, we introduce dimensionless independent variables
taking dy as the reference length along the x axis and L for
the other directions. We also denote by capital letters the
vector components orthogonal to the £ direction. (By ¥ we
denote the unit vector corresponding to the direction of vec-
tor v.) Thus, we have

y=y(s),
z=z(s),

X=X,

lxo__xll S L{82x12+ lRO _RIIZ}UZ,
~ 0n
t=tx+T, vV=0l%+VC,

da’ =el?dx' ds'.

Since the surface is narrow and the kemel of the integral
equation is an even function with respect to x’, the system of
integral equations (20) is separable into an equation corre-
sponding to the x direction,

oI(Ry) + ” LR

dmpylxy— x|
+0(L* %) =0, @n

and a vectorial equation (a system of two integral equations)
for the other directions,

VOR) + f f T‘R') T o= b e

ofo

A(jxg — x|, 0, v)da’

R')T(R')-(Ry—-R’)]
4mpglxg — x'|3

XC(|xg—x'|, @, v)da’ + O(L%%) = 0. (22)
]
~ c
RN A T
~ £
12012 I
S
y

FIG. 1. The geometry of a sensing element.
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We shall solve the system (22), which gives the main
forces on the sensor surface. Let F(x') be a smooth function.
We can write

F(x')=F(R')+x' &,F(R") + O(?),

and hence,

s p(x! 0 eg(s) + Velg(s) + [Ro - R']?
f ') dx'zzf R)_ s + 0%) = 2P (R"Ylog 5L Ve £ () ,| o RT, o),
dosts) 1%0 =X/ o Ixo—x'] |Ro—-R/|
) Fx’ 2eg(s)F(R’ 1
sz ( )I d.xl g(s) (, 2) = 0(83).
~dog(s) |X0~X I |RO R | \/8 S) + [RO R I
{
Taking into consideration these formulas, the integration T;,=T(R) =Tj§j+7}1ﬁj,

with respect to x’ in Egs. (21) and (22) can be performed
directly, and there results

ZWPOVO(R0)+J T(R")A(IR,-R’|)

Xlog eg(s)’ ) + Veg? (s") +|Ry— R'I2
[Ro~R’|
R' -R R’ -R,
’ 0 ( (R/) . /—0>
c IR =Ry IR" - Ry|
R;—-R’
i 0" I) [2g(s)/dsl — 0, (23)

\[8 )+|R0—R’

which is the integral equation for determining the traction on
the low-frequency sensor.

Remark 2: In the above formulas it was assumed that the
tractions are smooth functions across the beam. Equation
(23) still proves true in the case the tractions T(x') have
integrable singularities (like square root singularities) at the
beam’s sharp edges but is a smooth function at all the other
points.

B. A boundary-element approach to the integral
equation of the curvilinear sensor

For a numerical solution of Eq. (23) we consider the
nodal points R ,j=1,...,N+1 on the curve C and approxi-
mate the arc C between the Qomts R0 and R? 441 Of the curve
by the line segment & R R? yRE Wthh is the ba51c boundary
element we will use. The length of this line segment is de-
noted by ;. We shall determine the solution of the equation
in the points R;=(R; +R?+1)/2 lying at the middle of the
boundary elements Also for the vectorial quantities (like
velocities and tractions) we consider local Cartesian systems

of coordinates given by the unit vector §; of the direction
Rj R, and the normal unit vector fi;. We consider the trac-
tion T(R') as constant along the boundary element &; and

equal to the value
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and will write the equation (23) in the points R, projected on
a local system of coordinates in the form

E MUT) + 2 METS =~ 2miwpyVy'le, (24)
N N
2Mi;’7"+EM = —2miwpyVi'le, (25)
=1

where

M; =Myl + TR Ry), My; =[-8,
+ka[ﬁk’§j]]’
jk=1,....N

sn_a A A A
Mkj_sk njlkj+ka[Sk,nj],

jk=1,....N.

55 _ A .4 A oA
Mkj_sk Sjij+‘]kj[Sk’Sj]’

Here we have denoted

£g;+ \lazgfﬁ- R’ - Rklzd ,

1
1= 2GR R [ 1oz

IR" - Ry
(26)
R'-R,( R'-R
Jila]]=C(R; - Ry)g; R’ - Ri| ( R’ - Rl,:| ' a)
d !
s 27

S
323j + |R' - Rk|2

ka[gksﬁj] =8 ka[ﬁj]; ]kj[ﬁkaﬁj] =1 ka[ﬁj],

Jl8681 =8 Jul8,];  Jilhie8;] =1 Ji 8]

1. Calculation of the integrals 1, J,; for k+ j

To compute the integrals (26) and (27) for j # k, we use
an asymptotic expansion around £=0 and evaluate analyti-
cally the resulting integrals. Neglecting O(g?) terms there
results
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I;=A(R; - Ri)g;1,,

Jla)= C(le - Rkl)gj{a"jl 1+ R;.'k(a}'§j + a}ﬁi)’ 2
+(=aj;+aji)h).
Here we have used the notations
Ry=(R;~Rg- §;, Rj=(R;~Rg- i,
a;=aj§; + ajii;.
The integrals I;, I, I3 have the expressions

R* + Ry +hyi2
11 _1

=10 N
SR+ Ry—h2

2R'-kh-

12= )

R'R(R*+R)
S PRSP
FTRRR+ RO\ R Jk 2 ’

R =R+ 12 + (R,

R = VR~ h12)* + (R,

2. Calculation of the integrals I, Jy

By performing the change of variables,
1 (i} 1 ! 0
R, =R{+|—+— (R}, ~RD),
2 R

the integrals I;; and J;; become

AQ (" e+ eaP+ P

kk = 0g ltI

>4 —hyf2
hl(2e2)) 1+J1 + 2
=24(0)g; f log ———dy.

0 v

dt

(28)

‘We have
Tl 0] = T[S, 8] = S 8,,8,] = 0
and

t

- W d
Jul8i8:) = C(0) g, . ‘/[—sm

[ Iy ( Iy )2}
=2C(0)g logl —— +J1+| —] |. (29)
2eg; 2eg8;
The integral in formula (28) will be evaluated numerically.
Remark 3: We note that in formulas (28)—(29) enters the
ratio hy/e. In order to keep these terms finite, the number of
elements has to be chosen such that this ratio is of order
O(1). This is the price paid for combining a small parameter
asymptotic expansion with a finite element solution of the
resulting integral equation.
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C. A boundary-element approach for the curvilinear
sensor approximation in a half-space

In the case where the domain is the half-space z>0 we
will consider also the symmetrical curve C’ of C with respect
to the plane z=0. In the case we have on the whole curvilin-
ear arc C’' U C a number of 2N linear boundary elements we
can write the equations (24) and (25) taking 2N instead of N.
Taking also in consideration that for symmetrical elements
we have

7_';=7ﬂ2N+ 7;'=_TSZN+1—}" j=1,...,N.

15>

The system of equations for determining the tractions on the
surface become

N N
2 00T+ 2 OpTi=-2mwpgVfe, k=1,....N,
P =1

(30)

N N
2 00T+ 2, OpTi = 2miwpgVile, k=1,....N,

(31)

.
Il
—
.
il
—

— aqn nn __ AqnS ns
Q5 =M+ Miona Q=M — Mo,
j=1,....N,
n _ SN S S _ 55 ALY
lecj =M+ Mionn-p Qij =M;— Miona-p

j=1,...,N.

The traction on the surface is determined by the values
T}, T{(j=1, ..., N) resulting by solving the system (30), (31).

Remark 4: We note that by taking also the symmetrical
curve C' of C with respect to the z=0 plane we assure the
cancellation of the normal velocity component along the z
plane. The other two components are different from zero, but
we expect them to be small due to the small perturbations
produced by the sensor in the external domain. A complete
solution has to consider also a traction (mechanical resis-
tance) distribution along the plane z=0. But, the frictional
resistance within the hair base can be assumed zero since,
according to Ref. 20, no practical method is available to
measure such slight mechanical resistance.

D. Application

The developed theory and formulas were implemented
into a MATLAB program. Various parameters for the sound
field and the description of the shape and dimensions of the
sound sensors can be input into the program. The tractions at
the specified points on the central curve will be the output.
These output forces can be utilized in a finite element model
to gauge the harmonic response of the sound sensor.

In all the applications, the constant Py has been chosen
such that the incoming pressure wave has the amplitude
1 Pa; the frequency is assumed to be 100 Hz.
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FIG. 2. A sensing element in the shape of a half-ellipse.

The program was tested on a half-elliptical shape sensor
of 1 and 3.5 mm half-axis (Fig. 2) since it has two ends on
the plane z=0 and a simple analytical expression. The width
of the thin beam was chosen as 0.1 mm. The MATLAB pro-
gram was run for three inclinations of the incident sound
wave: O=m/3,m/4,7/8. The plots of the normal tractions
are given in Fig. 3 and those of tangential tractions in Fig. 4.
The continuous lines correspond to the real part of the trac-
tions and the dotted line to the imaginary parts.

The next application contains the case of a vertical plane
beam of variable width and a horizontal incoming plane
wave (6=m/2) given in Fig. 5. Two cases were considered
(1) {(a;=0.01 mm, a,=0.1 mm) corresponding to a long
trapezoid having its small basis in the plane z=0 and (2)
(a;=0.1 mm, a,=0.01 mm) when the trapezoid has its big
basis in the plane z=0. The moment of the forces resulting
from normal tractions with respect to the Ox axis are plotted
in Fig. 6. The total moment is in the first case MT,=9.0
X 1078-6.6 X 10%(mm-N), and in the second case MT,
=6.4%1078-3.7 X 107%(mm-N), which shows a strong in-
fluence of the shape of the thin beam on the moment. This is,
in fact, the result of the action of the boundary layer on the
plane xOy. (The geometrical parameters of the beam in this
case are: L=1 mm, big basis = 100 um, small basis
= 10 um). Hence, for designing an artificial hair-cell sensor
the first case would be preferable.

x 10°

15+

Tn[mm/N/mmz]

""'waéié;ﬂi’/im
1 2 3 1 5 s -
s{mm)]

FIG. 3. The normal tractions for the sensing element in Fig. 2.
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TmN/mm?)

6 7

FIG. 4. The tangential tractions for the sensing element in Fig. 2.

Finally, the last application is that in Fig. 7, where we
have a vertical rectangular narrow beam of length b that has
attached at the upper end a horizontal rectangular beam of
length a of the same width as the vertical beam. These beams
are connected by a quarter of circle of radius r to ensure that
the entire surface S is smooth. This structure is under the
influence of a horizontal plane pressure wave of 1 Pa ampli-
tude given by formula (15). For the case a=8 mm,b
=3 mm, r=0.1 mm, and width=0.14 mm, the tractions on
the structure are plotted in Fig. 8 (the real part) and in Fig.
9—the imaginary part. This structure is also advantageous
for designing artificial hair-like sensors since all the force
resulting from the tractions on the horizontal beam are acting
on the upper end of the vertical beam, which will give a
larger deflection of this component. This example is very
similar to the trichobothrium of a spider Cupiennius salel.
The curvature of the motion sensing hair is enhancing the
sensitivity of the trichobothrium to flows normal to the main
shaft of the hair. This fact supports the speculation by Barth
et al. concerning the role of curvature in the sensing
process.'®

By reversing the direction of the incoming pressure
wave the tractions in the last application remain unchanged.
This can be considered as a result of the theorem (of Olm-
stead and Gautesen %) concerning the drag invariance for the

FIG. 5. The sensing element in the shape of an erected trapezoid.
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FIG. 6. The moment of normal tractions for the sensing element in Fig. 5 for
two different geometries: the trapezoid having the small basis on the plane
z=0 (dotted line) and the case the large basis is on the plane z=0 (simple
continuous line).

reversal of the flow velocity for an arbitrary body. This para-
dox, proved in the case of incompressible flow, is still valid
for the flow of a compressible viscous fluid in the linearized
acoustic approximation.

In all the considered examples, the imaginary part of the
tractions are much smaller than the real part, showing a
strong influence of the viscosity.
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APPENDIX: THE FUNDAMENTAL INTEGRAL
FORMULA

We shall assume that the body occupying the domain D*
limited by the surface S is immersed into an external flow
field characterized by the pressure p%(x) and velocity v%(x),
which are satisfying the basic equations. The solution of the

FIG. 7. The sensing element in the shape of a horizontal narrow beam
attached at the upper end of a vertical beam.
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FS

FIG. 8. The real part of normal tractions (continuous line) and the tangential
tractions (dotted line) for the geometry in Fig. 7.

problem [p(x),v(x)] is defined in the external domain D~.
We extend these functions with the valve 0 in domain D*.
Then we have

. 0
- 1
R avavo0, —iev+ V- of=0,
<o Po Po
(A1)
inD*uUSuUD,
—iwp 0 . 1
—5—=+V-v'=0, —iwv+—V-0=0,
Co Po Po
(A2)
inD*uUD.
Also, we define
p'=p-p% v=v-V', inD'UD, (A3)

which, by means of relationships (A1), (A2) are satisfying
the equations

X
15F u. ¥ Y T t T T

i

o

Im(Tn}

(Tt m(TrmNAmm 3]

8

-1

5 I L A 1 ) L L

T 2 3 4 s & 7 & 9 10
simm]

FIG. 9. The imaginary part of normal tractions (continuous line) and the
tangential tractions (dotted line) for the geometry in Fig. 7.
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- * 1 *
%“’”—w v'=0, -—iwv+—V-o =0,
¢y Po Po
(Ad)

inD*UD.
Now, we consider the Fourier transform with respect to space
variables,

(), v (), 0" (K)} = fff{p(x v (x),07(x)}

Xexp(— ik - x)dv,;

which results in

W = J f f Vo' (x)exp(- ik - X)dv,
= f f f V- o' (x)exp(- ik * X)dv,
D+
+ J f f _V - o (x)exp(- ik - X)dv,.

V.o exp(—ik-x)=V-[o" exp(~ ik x)]
—[Vexp(-ik-x)}- 0"
ik x)]

But

=V-[c" exp(-
+ik+ 0" exp(-ik-x).

Then, we obtain

f f f V - o (x)exp(- ik * x)dv,
D+
=ik- J j J o’ (x) exp(- ik * X)dv
D+

- f f n - o’(x)exp(~ ik - x)da (A5)
s
J J f -V - o (x)exp(- ik - X)dv,
=ik- J f j i o (x)exp(- ik - X)dv,
- f f n - [o(x) — 6%(x)Jexp(- ik * X)da, (A6)
s

where n denotes the unit normal vector at the surface S
pointing outward. The sum of relationships (A5) and (A6)
gives

/V:r_i=—ik-’c7—ff t(x)exp(- ik - x)da,
s

where
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t(x) =n - o(x)

is the traction (surface stress) at the surface. For the velocity

we obtain similarly
V.o =—ik-V,

where the condition v=0 on the solid surface S has been

used.
The Fourier transform of the system (A4) gives

(A7)

—iwv +ik- —(r =~—ff t(x)exp(- ik - x)da. (ASB)
Po

Thus, the algebraic system obtained in Fourier Transform
space contains also on the right-hand side of Eq. (A8) the
action of the surface S on the fluid motion. Since we have

2
o= [’;‘ - (MB— glu,)ik -7}5U~M(ik;5f+ikfuj),
the equation (A8) can be written in the form

—%
(vk|* - iw)v +ik - (p_ - (V' =ik 7)
Po

1
= *f f t(x)exp(- ik - x)da. (A9)
Po S
The inner product of the equation ( ) by ik gives
(V' K]* - iw)ik v —[k|2 ————ff ik - t(x
Xexp(- ik - x)da. (A10)

The equations (A8), (A9), and (A10) can be solved for p*
and v°,

—% lk t X)
k) = exp(— ik * X)da,
P& 1-iwv'/c; j f k|* - &? xp(- ik x)da

(A11)
Vi(k) = $ f f W;(%CXP(_ ik *x)da (A12)
s |k[F-
1 K[k -

For determining the corresponding representation formulas
in physical space, we shall use the inversion formula®**®

fffexp(zk x exp(i\/’}-\-|x|)
@)’ KZ-n UK

47lx|
where \/)\=y1+i72, v, 3 0. There results

, (Al4)
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o o, t(xexp(ik|x - x'])
i) =p ) -V fjg47'r(1—iwv'/cg)]x—x'| ¢

(A15)

W(X)zvo(x)+ff t(x")exp(ik IX—X’Dda,
S

4mpyv|x —x'|
+VV. J f
s

t(x) [exp(ik|x —x'|) — exp(iklx —=x'])]
X da
dmmiwpg|x — x'|

(A16)

The function ¥(x) appears due to the known property of
Fourier recovery of discontinuous furnctions. It has the ex-
pression

1, forxe?D,
¥x)=105, forxeS,
0, forx e D*.

The relationship (A16) is the fundamental integral for-
mula for the motion of a compressible viscous fluid in a
linear acoustic approximation.
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